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This Work
Optimizing Coflow performance has many benefits 
such as avoiding application stragglers[1,2] and 
improving resource utilization[3,4]. Existing Coflow
studies all assume a monolithic network model.

New technology trends lead to Heterogeneous
Parallel Networks in an evolving data center.

Weaver is the first scheduler to address the Coflow
management problem in Heterogeneous Parallel
Networks.
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[1] Orchestra (SIGCOMM ’11).  [2] Varys (SIGCOMM ’14). 

[3] CARBYNE (OSDI ‘16).   [4] YARN-ME (memory elasticity, in ATC ’17)



Coflow #3
(broadcast)

Coflow #2
(aggregation)

Coflow #1
(shuffle)

• Coflow[1] : A set of related flows. 
• Performance is measured by Coflow Completion Time (CCT), 

i.e. the last flow’s completion time.
• Coflow-aware scheduling speeds up applications[2][3]. 

[1] Chowdhury, M. et al. Coflow: An application layer abstraction for cluster networking. (HotNets’12)
[2] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[3] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15) 3

Coflow: Traffic Abstraction for 
MapReduce-like Applications
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Coflow Scheduling
• Prior works demonstrate benefits of Coflow scheduling.

• Limitation: Assumes “big-switch” network model, which 
abstracts the whole network fabric as a non-blocking switch. 

Varys (SIGCOMM ’14), Aalo (SIGCOMM ’15), CODA (SIGCOMM ’16) and Sunflow (CoNEXT ’16), etc.

sender

sender receiver

receiver

… …

This network model is no longer sufficient 
under recent technology trends
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Because of the shrinking gap, a legacy 
network can still service a considerable 

amount of traffic relative to a new network.



HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…



HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

network “core”



HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks 
per sender

network “core”



HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks 
per sender

K downlinks 
per receiver

network “core”



HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks 
per sender

Can be a bundle of 
multiple physical links

K downlinks 
per receiver

network “core”



HPNs:
Heterogeneous Parallel Networks
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… …
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r(2)

r(K)

…
HPNs already deployed today[1] to support 

network upgrades and research efforts 

[1] Singh, A. et al. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network. (SIGCOMM ’15)
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TA

BA

Weaver to manage Coflows in HPNs

• Optimality guarantee: within a constant factor of the optimal
• By assigning critical flows to minimize CCT 

• Further optimize assignment by …
• Starting from larger flows 

• Assigning non-critical flows to balance load

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15)
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Weaver to manage Coflows in HPNs

• Optimality guarantee: within a constant factor of the optimal
• By assigning critical flows to minimize CCT 

• Further optimize assignment by …
• Starting from larger flows 

• Assigning non-critical flows to balance load

• Flexible framework to accommodate state-of-the-art Coflow 
scheduling policies to achieve the desired scheduling goal 

• Reuse state-of-the-art inter-Coflow schedulers for BAs  
• E.g. Varys[1] and Aalo[2], both designed to min avg CCT

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15)



Evaluations
• [Simulations] Intra-Coflow TA efficiency

• Weaver’s TA has the best performance guarantee among 
competitive algorithms

• [Simulations] Inter-Coflow Scheduling (TA+BA)

• Weaver achieves Coflow performance close to the ideal 
monolithic network.

• Weaver improves TA by better assignment ordering  
• Weaver improves TA by load balancing non-critical flows
• Weaver remains robust under different BA policies 

• [Testbed] Inter-Coflow Scheduling (TA+BA)
• Weaver achieves Coflow performance close to the ideal 

monolithic network
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Simulation setup
• Flow-level simulator and realistic Coflow trace
• Various HPNs configurations under K=2, 3, 4

• Various bandwidth splits under each K
• E.g. a 20%:80% split (K=2) is relevant for the 10G/40G HPNs

• Baseline: ideal monolithic network providing 100% bandwidth
• Scheduling schemes compared
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TA BA
Weaver Weaver TA Varys[1]

Weighted Random Naïve Weighted  Random TA Varys[1]

Rapier[2]
Linear Programming based Coflow 

scheduling in generic topology
(Control both TA and BA)

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Zhao, Y. et al. Rapier: Integrating Routing and Scheduling for Coflow-Aware Data Center Networks (INFOCOM’15)
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Our testbed results generally resemble those of simulations. See paper for details. 
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Refer to our paper for more results
• [Simulations] Intra-Coflow TA efficiency

• Weaver’s TA has better performance guarantee 
• [Simulations] Inter-Coflow Scheduling (TA+BA)

• Weaver achieves Coflow performance close to the ideal monolithic network.
• Weaver improves TA by better assignment ordering  
• Weaver improves TA by load balancing non-critical flows
• Weaver remains robust under different BA policies 

• [Testbed] Inter-Coflow Scheduling (TA+BA)
• Weaver achieves Coflow performance close to the ideal monolithic network
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Open Source Code & Benchmark 
https://github.com/sunnyxhuang/weaver 



Conclusions
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• The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the ideal monolithic network.

• Weaver exploits HPNs at two levels: efficient traffic 
assignment for each Coflow and coordinated bandwidth 
allocation among multiple Coflows.

• Weaver inspires how an evolving data center can make 
the most out of its multiple generations of network fabrics.

Open Source Code & Benchmark 
https://github.com/sunnyxhuang/weaver 

Thank You!


