
Xin Sunny Huang Yiting Xia T. S. Eugene Ng
Rice University

Efficient Coflow Scheduling in
Heterogeneous Parallel Networks

WEAVER

1

This Work
Optimizing Coflow performance has many benefits
such as avoiding application stragglers[1,2] and
improving resource utilization[3,4]. Existing Coflow
studies all assume a monolithic network model.

New technology trends lead to Heterogeneous
Parallel Networks in an evolving data center.

Weaver is the first scheduler to address the Coflow
management problem in Heterogeneous Parallel
Networks.

2
[1] Orchestra (SIGCOMM ’11). [2] Varys (SIGCOMM ’14).

[3] CARBYNE (OSDI ‘16). [4] YARN-ME (memory elasticity, in ATC ’17)

Coflow #3
(broadcast)

Coflow #2
(aggregation)

Coflow #1
(shuffle)

• Coflow[1] : A set of related flows.
• Performance is measured by Coflow Completion Time (CCT),

i.e. the last flow’s completion time.
• Coflow-aware scheduling speeds up applications[2][3].

[1] Chowdhury, M. et al. Coflow: An application layer abstraction for cluster networking. (HotNets’12)
[2] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[3] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15) 3

Coflow: Traffic Abstraction for
MapReduce-like Applications

4

Coflow Scheduling
• Prior works demonstrate benefits of Coflow scheduling.

• Limitation: Assumes “big-switch” network model, which
abstracts the whole network fabric as a non-blocking switch.

Varys (SIGCOMM ’14), Aalo (SIGCOMM ’15), CODA (SIGCOMM ’16) and Sunflow (CoNEXT ’16), etc.

sender

sender receiver

receiver

… …

This network model is no longer sufficient
under recent technology trends

5

1983 1995 1998 2002 20102010 2014 20171M
10M

100M
1G

10G
100G

Li
nk

 ra
te

(b
it/

s)

 802.3 802.3u
 802.3z

 802.3ae
 802.3ba

 802.3by
 802.3bs

Shrinking Generation Gap
in Link Speed

Link rate and the year first introduced in IEEE 802.3

Economically feasible
link rate for a new

network is only 2.5x or 4x
of the legacy network.

5

1983 1995 1998 2002 20102010 2014 20171M
10M

100M
1G

10G
100G

Li
nk

 ra
te

(b
it/

s)

 802.3 802.3u
 802.3z

 802.3ae
 802.3ba

 802.3by
 802.3bs

Shrinking Generation Gap
in Link Speed

Link rate and the year first introduced in IEEE 802.3

Economically feasible
link rate for a new

network is only 2.5x or 4x
of the legacy network.

Strong incentive to reuse
legacy network after

adding a new network

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G

40G
Upgrade with a

new network

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G20% of traffic!

40G

Because of the shrinking gap, a legacy
network can still service a considerable

amount of traffic relative to a new network.

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G

40G

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G

40G

100G
Upgrade with a

new network

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …
10G

40G

100G

Retire old network with
significantly smaller capacity

than the youngest network

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …

40G

100G

Exploit the Shrinking Gap with
Heterogeneous Parallel Networks

6

sender

sender receiver

receiver

… …

40G

100G

~30% of traffic!

Because of the shrinking gap, a legacy
network can still service a considerable

amount of traffic relative to a new network.

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

network “core”

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks
per sender

network “core”

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks
per sender

K downlinks
per receiver

network “core”

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…

K uplinks
per sender

Can be a bundle of
multiple physical links

K downlinks
per receiver

network “core”

HPNs:
Heterogeneous Parallel Networks

7

sender

sender receiver

receiver

… …
r(1)

r(2)

r(K)

…
HPNs already deployed today[1] to support

network upgrades and research efforts

[1] Singh, A. et al. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network. (SIGCOMM ’15)

8

sender

sender receiver

receiver

…

…

r(2)s2

r(K)sK

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

…

…

r(2)s2

r(K)sK

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

…

…

S 1
BA

r(2)s2

r(K)sK

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

…

…

S 1
BA

S 2
BA r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

…

…

S 1
BA

S 2
BA

S K
BA

r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

…

…

S 1
BA

S 2
BA

S K
BA

r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

Weaver:
…

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

… …

…

S 1
BA

S 2
BA

S K
BA

r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

TA

Weaver:
and Traffic Assignment (TA)

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

… …

…

S 1
BA

S 2
BA

S K
BA

r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

TA

∎ ∎ ∎
∎ ∎ ∎
∎ ∎ ∎
Coflow
Request

Weaver:
and Traffic Assignment (TA)

Bandwidth Allocation (BA)

8

sender

sender receiver

receiver

… …

…

S 1
BA

S 2
BA

S K
BA

r(2)s2

r(K)sK

r(2)s2

…

r(1)s1

TA

∎ ∎ ∎
∎ ∎ ∎
∎ ∎ ∎
Coflow
Request

Weaver:
and Traffic Assignment (TA)

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

Start assignment from larger flows that are
more likely to finish later and determine CCT

r(1)=1

r(2)=4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

Start assignment from larger flows that are
more likely to finish later and determine CCT

r(1)=1

r(2)=4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

CCT = 90/1 = 90

CCT = 90/4 = 22.5

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

CCT = 90/1 = 90

CCT = 90/4 = 22.5

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Critical flow: increases CCT on
any network core after adding

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

CCT = 90/1 = 90

CCT = 90/4 = 22.5

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Critical flow: increases CCT on
any network core after adding

Assign critical flow to min CCT
to obtain optimality guarantee

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

CCT = 90/1 = 90

CCT = 90/4 = 22.5

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Critical flow: increases CCT on
any network core after adding

Assign critical flow to min CCT
to obtain optimality guarantee

90

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

CCT = 90/1 = 90

CCT = 180/4 = 45

Critical flow: increases CCT on
any network core after adding

Assign critical flow to min CCT
to obtain optimality guarantee

90
90

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

r(1)=1

r(2)=4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

90
90
90

CCT = 90/1 = 90

CCT = 270/4 = 67.5

Critical flow: increases CCT on
any network core after adding

Assign critical flow to min CCT
to obtain optimality guarantee

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10

90
90
90

r(1)=1

r(2)=4
9090
90
90

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

CCT determined by in.1

CCT determined by out.4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

CCT determined by out.4

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Non-critical flow: CCT
unchanged after adding

CCT determined by in.1

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

FCT = (10 + 5)/1 =15

FCT = (90 + 5)/4 = 23.75

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

Weaver’s TA Algorithm

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

FCT = (10 + 5)/1 =15

FCT = (90 + 5)/4 = 23.75

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

assign non-critical flow to less busy
core on flow path to balance load

Weaver’s TA Algorithm

10 10
5

90
90
90

9

90 10 10
90 5
903

in.1
2

out.4 5 6

s2

r(1)=1s1

r(2)=4
How to assign?

10 10

90
90
90

r(1)=1

r(2)=4
9090
90
90

Refer to our paper for a detailed description on this example and the Weaver’s TA algorithm.

10

TA

BA

Weaver to manage Coflows in HPNs

• Optimality guarantee: within a constant factor of the optimal
• By assigning critical flows to minimize CCT

• Further optimize assignment by …
• Starting from larger flows

• Assigning non-critical flows to balance load

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15)

10

TA

BA

Weaver to manage Coflows in HPNs

• Optimality guarantee: within a constant factor of the optimal
• By assigning critical flows to minimize CCT

• Further optimize assignment by …
• Starting from larger flows

• Assigning non-critical flows to balance load

• Flexible framework to accommodate state-of-the-art Coflow
scheduling policies to achieve the desired scheduling goal

• Reuse state-of-the-art inter-Coflow schedulers for BAs
• E.g. Varys[1] and Aalo[2], both designed to min avg CCT

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Chowdhury, M. et al. Efficient Coflow Scheduling Without Prior Knowledge. (SIGCOMM’15)

Evaluations
• [Simulations] Intra-Coflow TA efficiency

• Weaver’s TA has the best performance guarantee among
competitive algorithms

• [Simulations] Inter-Coflow Scheduling (TA+BA)

• Weaver achieves Coflow performance close to the ideal
monolithic network.

• Weaver improves TA by better assignment ordering
• Weaver improves TA by load balancing non-critical flows
• Weaver remains robust under different BA policies

• [Testbed] Inter-Coflow Scheduling (TA+BA)
• Weaver achieves Coflow performance close to the ideal

monolithic network

11

Simulation setup
• Flow-level simulator and realistic Coflow trace
• Various HPNs configurations under K=2, 3, 4

• Various bandwidth splits under each K
• E.g. a 20%:80% split (K=2) is relevant for the 10G/40G HPNs

• Baseline: ideal monolithic network providing 100% bandwidth
• Scheduling schemes compared

12

TA BA
Weaver Weaver TA Varys[1]

Weighted Random Naïve Weighted Random TA Varys[1]

Rapier[2]
Linear Programming based Coflow

scheduling in generic topology
(Control both TA and BA)

[1] Chowdhury, M. et al. Efficient coflow scheduling with Varys. (SIGCOMM’14)
[2] Zhao, Y. et al. Rapier: Integrating Routing and Scheduling for Coflow-Aware Data Center Networks (INFOCOM’15)

Improvement in Average CCT
Normalized average-CCT under Various HPNs Configurations

13

1 2 3 4 5
Configuration index

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
av

er
ag

e
CC

T

(a) K=2

Our Work Linear Programming Weighted Randomlower is better

1 2 3 4 5 6 7 8
Configuration index

1.0

1.2

1.4

1.6

(b) K=3

1 2 3 4 5 6 7 8 9
Configuration index

1.0

1.2

1.4

1.6

(c) K=4

Weaver

1 : 9

2 : 8

3 : 7

4 : 6

5 : 5

1 : 1 : 8
1 : 2 : 7
1 : 3 : 6
1 : 4 : 5
2 : 2 : 6
2 : 3 : 5
2 : 4 : 4
3 : 3 : 4

1 : 1 : 1 : 7
1 : 1 : 2 : 6
1 : 1 : 3 : 5
1 : 1 : 4 : 4
1 : 2 : 2 : 5
1 : 2 : 3 : 4
1 : 3 : 3 : 3
2 : 2 : 2 : 4
2 : 2 : 3 : 3

HPNs Bandwidth Split (x10%)

Improvement in Average CCT
Normalized average-CCT under Various HPNs Configurations

13

1 2 3 4 5
Configuration index

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
av

er
ag

e
CC

T

(a) K=2

Our Work Linear Programming Weighted Randomlower is better

1 2 3 4 5 6 7 8
Configuration index

1.0

1.2

1.4

1.6

(b) K=3

1 2 3 4 5 6 7 8 9
Configuration index

1.0

1.2

1.4

1.6

(c) K=4

The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the monolithic network.

Weaver

1 : 9

2 : 8

3 : 7

4 : 6

5 : 5

1 : 1 : 8
1 : 2 : 7
1 : 3 : 6
1 : 4 : 5
2 : 2 : 6
2 : 3 : 5
2 : 4 : 4
3 : 3 : 4

1 : 1 : 1 : 7
1 : 1 : 2 : 6
1 : 1 : 3 : 5
1 : 1 : 4 : 4
1 : 2 : 2 : 5
1 : 2 : 3 : 4
1 : 3 : 3 : 3
2 : 2 : 2 : 4
2 : 2 : 3 : 3

HPNs Bandwidth Split (x10%)

We have also validated the inter-Coflow scheduling efficiency with testbed experiments.
Our testbed results generally resemble those of simulations. See paper for details.

Improvement in Average CCT
Normalized average-CCT under Various HPNs Configurations

54

1 2 3 4 5
Configuration index

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
av

er
ag

e
CC

T

(a) K=2

Our Work Linear Programming Weighted Randomlower is better

1 2 3 4 5 6 7 8
Configuration index

1.0

1.2

1.4

1.6

(b) K=3

1 2 3 4 5 6 7 8 9
Configuration index

1.0

1.2

1.4

1.6

(c) K=4

The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the monolithic network.

LP-based Rapier: Less efficient TA algorithm and
less efficient inter-Coflow scheduling in HPNs

Weaver

1 : 9

2 : 8

3 : 7

4 : 6

5 : 5

1 : 1 : 8
1 : 2 : 7
1 : 3 : 6
1 : 4 : 5
2 : 2 : 6
2 : 3 : 5
2 : 4 : 4
3 : 3 : 4

1 : 1 : 1 : 7
1 : 1 : 2 : 6
1 : 1 : 3 : 5
1 : 1 : 4 : 4
1 : 2 : 2 : 5
1 : 2 : 3 : 4
1 : 3 : 3 : 3
2 : 2 : 2 : 4
2 : 2 : 3 : 3

HPNs Bandwidth Split (x10%)

We have also validated the inter-Coflow scheduling efficiency with testbed experiments.
Our testbed results generally resemble those of simulations. See paper for details.

Improvement in Average CCT
Normalized average-CCT under Various HPNs Configurations

13

1 2 3 4 5
Configuration index

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
av

er
ag

e
CC

T

(a) K=2

Our Work Linear Programming Weighted Randomlower is better

1 2 3 4 5 6 7 8
Configuration index

1.0

1.2

1.4

1.6

(b) K=3

1 2 3 4 5 6 7 8 9
Configuration index

1.0

1.2

1.4

1.6

(c) K=4

The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the monolithic network.

LP-based Rapier: Less efficient TA algorithm and
less efficient inter-Coflow scheduling in HPNs

Weighted Random: Inefficient
TA due to randomness.

Weaver

1 : 9

2 : 8

3 : 7

4 : 6

5 : 5

1 : 1 : 8
1 : 2 : 7
1 : 3 : 6
1 : 4 : 5
2 : 2 : 6
2 : 3 : 5
2 : 4 : 4
3 : 3 : 4

1 : 1 : 1 : 7
1 : 1 : 2 : 6
1 : 1 : 3 : 5
1 : 1 : 4 : 4
1 : 2 : 2 : 5
1 : 2 : 3 : 4
1 : 3 : 3 : 3
2 : 2 : 2 : 4
2 : 2 : 3 : 3

HPNs Bandwidth Split (x10%)

We have also validated the inter-Coflow scheduling efficiency with testbed experiments.
Our testbed results generally resemble those of simulations. See paper for details.

Refer to our paper for more results
• [Simulations] Intra-Coflow TA efficiency

• Weaver’s TA has better performance guarantee
• [Simulations] Inter-Coflow Scheduling (TA+BA)

• Weaver achieves Coflow performance close to the ideal monolithic network.
• Weaver improves TA by better assignment ordering
• Weaver improves TA by load balancing non-critical flows
• Weaver remains robust under different BA policies

• [Testbed] Inter-Coflow Scheduling (TA+BA)
• Weaver achieves Coflow performance close to the ideal monolithic network

14

Open Source Code & Benchmark
https://github.com/sunnyxhuang/weaver

Conclusions

15

• The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the ideal monolithic network.

• Weaver exploits HPNs at two levels: efficient traffic
assignment for each Coflow and coordinated bandwidth
allocation among multiple Coflows.

• Weaver inspires how an evolving data center can make
the most out of its multiple generations of network fabrics.

Open Source Code & Benchmark
https://github.com/sunnyxhuang/weaver

Thank You!

